Let fx2x2 on the interval a b1 2 Then property a holds since
Let f(x)=2/x2 on the interval [a, b]=[1, 2] Then property (a) holds, since 2/x2 positive on the interval [1, 2]. For property (b)
If X admits this probability density function, then
A. 1/3
B. 1/2
C. 2/3
D. 3/2
Let f(x)=2/x2 on the interval [a, b]=[1, 2] Then property (a) holds, since 2/x2 positive on the interval [1, 2]. For property (b) p(1.5 leq X leq 2)= A. 1/3 B. 1/2 C. 2/3 D. 3/2 int_{1}^{2} frac{2}{x^{2}}dx = [ frac{-2}{x}]_{1}^{2} = 1 If X admits this probability density function, thenSolution
C. 2/3
![Let f(x)=2/x2 on the interval [a, b]=[1, 2] Then property (a) holds, since 2/x2 positive on the interval [1, 2]. For property (b) If X admits this probability d Let f(x)=2/x2 on the interval [a, b]=[1, 2] Then property (a) holds, since 2/x2 positive on the interval [1, 2]. For property (b) If X admits this probability d](/WebImages/6/let-fx2x2-on-the-interval-a-b1-2-then-property-a-holds-since-986333-1761506751-0.webp)