Let v1 1 1 1 1T v2 1 2 1 2T and v3 0 1 0 2T and v v1 v2

Let v_1 = (1, 1, 1, 1)^T, v_2 = (1, 2, -1, 2)^T, and v_3 = (0, 1, 0, 2)^T and v = (v_1, v_2, v_3). Thus each v_i is in R^4 and v is a list of vectors. Use the Gram-Schmidt process to create an orthonormal list w = (w_1, w_2, W_3) with the same span as v.

Solution

Here v1= [1 1 1 1]T

v2= [1 2 -1 2]T

v3= [0 1 0 2]T . and v= {v1, v2, v3}

Now if w= {w1, w2, w3} is a orthonormal set of vectors, then assume w1= v1.

Let w2 = a v1+v2 . Then (w2, v1)= 0 = a(v1, v1) + (v2, v1) i.e. a ||v1||2 + (v2,v1) = 0

=> a= - (v2, v1) / ||v1||2 .

=> a= - 4/4 = -1. So, w2= v2-v1 = [0 1 -2 1]T .

Now, let w3= b.w1 + c.w2 + v3 . Then (w3, w1) = 0 = b.|| w1||2 + c.(w2, w1) + (v3, w1)

=> b= - (v3, w1) / || w1||2 = - 3/4.

also (w3, w2) = 0 = b.(w1, w2)+ c.|| w2||2 + (v3, w2) => c = - (v3, w2) / || w2||2

=> c = - 3/6 = -1/2

=> w3 = (-3/4)w1 + (-1/2)w2 + v3

=> w3 = [ -3/4 , -1/4 , 1/4 , 3/4]T

Thus the orthonormal list w= { [1, 1, 1, 1]T , [0, 1, -2, 1]T , [-3/4, -1/4, 1/4, 3/4]T}

 Let v_1 = (1, 1, 1, 1)^T, v_2 = (1, 2, -1, 2)^T, and v_3 = (0, 1, 0, 2)^T and v = (v_1, v_2, v_3). Thus each v_i is in R^4 and v is a list of vectors. Use the

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site