The mean amount purchased by a typical customer at Churchill
The mean amount purchased by a typical customer at Churchill\'s Grocery Store is $21.00 with a standard deviation of $7.00. Assume the distribution of amounts purchased follows the normal distribution. For a sample of 42 customers, answer the following questions. a. What is the likelihood the sample mean is at least $22.50? (Round z value to 2 decimal places and final answer to 4 decimal places.) Probability b. What is the likelihood the sample mean is greater than $20.00 but less than $22.50? (Round z value to 2 decimal places and final answer to 4 decimal places.) Probability c. Within what limits will 99 percent of the sample means occur? (Round your answers to 2 decimal places.) Sample mean and
Solution
a)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    22.5      
 u = mean =    21      
 n = sample size =    42      
 s = standard deviation =    7      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    1.39      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.39   ) =    0.0823 [ANSWER]
*****************
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    20      
 x2 = upper bound =    22.5      
 u = mean =    21      
 n = sample size =    42      
 s = standard deviation =    7      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.93      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.39      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.1762      
 P(z < z2) =    0.9177      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.7415   [ANSWER]
******************
c)
These correspond to the endpoints with left tailed area of 0.005 and 0.995.
First, we get the z score from the given left tailed area. As
 Left tailed area =    0.005      
           
 Then, using table or technology,          
           
 z =    -2.58      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    21      
 z = the critical z score =    -2.58      
 s = standard deviation =    7      
 n = sample size =    42      
 Then          
           
 x = critical value =    18.2132815      
   
 ****
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.995      
           
 Then, using table or technology,          
           
 z =    2.58      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    21      
 z = the critical z score =    2.58      
 s = standard deviation =    7      
 n = sample size =    42      
 Then          
           
 x = critical value =    23.7867185      
Thus, it is between 18.21 and 23.79. [ANSWER]


