The number of diners at a restaurant each day is recorded an
     The number of diners at a restaurant each day is recorded and a daily average is calculated every month (assume 30 days in a month). The number of diners each day has a mean of 142 and a standard deviation of 58, but does not necessarily follow a normal distribution.  The probability that a daily average over a given month is greater than x is 2.5%. Calculate x. You may find standard normal table useful. Give your answer to 3 decimal places.   
  
  Solution
By central limit theorem, the sampling distribution of the means will be approximately normally distirbuted.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.975      
           
 Then, using table or technology,          
           
 z =    1.959963985      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    142      
 z = the critical z score =    1.959963985      
 s = standard deviation =    58      
 n = sample size =    30      
 Then          
           
 x = critical value =    162.7546521   [ANSWER]  

