Write the complex number 12 16i in trigonometric form rcos
     Write the complex number -12 + 16i in trigonometric form r(cos theta + i sin theta), with theta in the interval (0 degree, 360 degree) 
  
  Solution
the trignometric form of z = a + bi is z = r ( cos(theta) + i sin (theta) )
where r = |a + bi| is the modulus of z, and tan = b / a . is called the argument of z.
Normally, we will require 0 < 2.
given z = -12 + 16 i
then r= sqrt ( ( -12 )^2 + 16^2 )
=sqrt ( 144 + 256 )
r ==> 20
tan( theta ) = 16 / -12
tan ( theta ) = -4 / 3
theta = tan^-1( -4 / 3 )
theta = -53.1301023542
then
z = 20 ( cos(-53.1301023542) + i sin (-53.1301023542))
z = 20 ( 0.6 + i -0.8 )

