Consider the differential equation y8y12y4ex where primes in
Consider the differential equation
y+8y+12y=4e^(x)
(where primes indicate derivatives with respect to x).
Find a particular solution to the differential equation having the form
yp=u1y1+u2y2
using the method of Variation of Parameters. In this, (Note that this asks for u1 and u2, not u1and u2!)
y1= e^(-6x)
y2= e^(-2x)
u1= -e^(7x)
u2= e^(3x)
Then use your solution to find a solution to the differential equation that satisfies the initial conditions y(0)=0, y(0)=0
y= [BLANK]
Solution
Associated homogeneous ode needs to be solved first which is
y\'\'+8y\'+12y=0
Let,y=exp(kx)
So, k^2+8k+12=0
k=-2,-6
So,y=a exp(-2x)+b exp(-6x)
Particular solution is
yp=u1 exp(-2x)+u2 exp(-6x)
Constraint is
u1\' exp(-2x)+u2\'exp(-6x)=0\\\\
u2\'=-u1\' exp(4x)
yp\'=-2u1 exp(-2x)-6 u2 exp(-6x)
yp\'\'=-2u1\' exp(-2x)-6 u2\' exp(-6x)+4u1 exp(-2x)+36 u2 exp(-6x)
yp\'\'+8yp\'+12yp
=-2u1\' exp(-2x)-6 u2\' exp(-6x)+4u1 exp(-2x)+36 u2 exp(-6x)-16u1 exp(-2x)-48 u2 exp(-6x)+
12u1 exp(-2x)+12u2 exp(-6x)=4e^x
exp(-2x) and exp(-6x) are solutions to homogeneous ode so we get
-2u1\' exp(-2x)-6 u2\' exp(-6x)=4e^x
-u1\'exp(-2x)-3u2\' exp(-6x)=4e^x
u2\'=-u1\' exp(4x)
-u1\'exp(-2x)+3u1\'exp(-2x)=4e^x
2u1\' exp(-2x)=4e^x
u1\'=e^{3x}
Integrating gives
u1=exp(3x)/3
u2\'=-u1\' exp(4x)=-exp(7x)
Integarting gives
u2=-exp(7x)/7
So, yp=exp(x)/3- exp(x)/7=4exp(x)/21
General solution is
y=a exp(-2x)+b exp(-6x)+4exp(x)/21
y(0)=0=a+b+4/21
y\'(0)=-2a-6b+4/21=0
Solving gives
a=-1/3,b=1/7

