the problem is 2126 with the picture below ot axes OA of the
 the problem is 2-126 with the picture below ot
Solution
force F is along CD , so
CD = D - C = (0i + 12j + 0k) - (6i +4j -2k) = -6i + 8j + 2k
 direction vector CDcap = -6i + 8j + 2k / (sqrt(6^2+8^2+2^2) = (-6i + 8j + 2k) / 10.20
 vector F = 100(-6i + 8j + 2k) / 10.20
 BC = C - B = (6i +4j -2k) - (0i + 0j + 0k) = (6i +4j -2k)
|BC| = sqrt(6^2 + 4^2 + 2^2) = 7.48
magnitude of force along BC = F.BC / |BC| = [ (100(-6i + 8j + 2k).(6i +4j -2k) / 10.20 )]/(7.48)
= |100 x (-36 + 32 -4)/ (10.20 x 7.48)| = 10.48
 component of F along BC = 10.48((6i +4j -2k) / 7.48) = 8.4i + 5.6j - 2.8k lb ......Ans
 127.
BC = (6i +4j -2k)
BA = A - B = -3i + 0j + 0k
 cos@ = (BC.BA) / (|BC|)(|BA|)
cos@ = (-18 / (3 x 7.48)) = - 0.802
 @ = 143.33 deg

