Continuous Random Variables we are working with commonly use
Continuous Random Variables
we are working with commonly used discrete and continuous distribution
If X is a normal random variable with a mean of 17 and a variance of 9, what is P(12 LE X LE 25)? If Y is a normal random variable with a mean 25 and unknown variance. If P(X LE 29,9) = 0.9192, what is the variance sigma^2Solution
Q1.
 Mean ( u ) =17
 Standard Deviation ( sd )=9
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 12) = (12-17)/9
 = -5/9 = -0.5556
 = P ( Z <-0.5556) From Standard Normal Table
 = 0.28926
 P(X < 25) = (25-17)/9
 = 8/9 = 0.8889
 = P ( Z <0.8889) From Standard Normal Table
 = 0.81297
 P(12 < X < 25) = 0.81297-0.28926 = 0.5237                  
                   
 Q2.
 P ( Z < X ) = 0.9192
 Value of z to the cumulative probability of 0.9192 from normal table is 1.4
 P( X-u/s.d < X - 25/ s.d ) = 0.9192
 That is, ( 29 - 25/ s.d ) = 1.3997
 --> s.d = ( 29 - 25 ) / 1.3997
 --> s.d = ( 4 ) / 1.3997
 --> s.d = 2.8577                  
 --> Variance = 2.8577^2 = 8.1664

