Given that angle A is not an integer multiple of pi2 A noteq
Given that angle A is not an integer multiple of pi/2 (A notequalto) which of the following are true? sec^2 x - tan^2 x = 1 cot^2 x - csc^2 x = -1 sin^2 x - csc^2 x + cos^2 x + sec^2 x - tan^2 x + cot^2 x = 1 cos x. sec x = 1 2 cos^2 x - cos(2x) = 1 sin^2 x + cos^2 x = 1 tan x. cot x + cos x sec x - sin x. csc x = 1 cos(2x) + 2 sin^2 (x) = 1
Solution
AS per trigonometric identity:
1+tan^2x +sec^2x
sec^2x -tan^2x = 1
So, True
2) Trig identity : 1+cot^2x = csc^2x
So, cot^2x -csc^2x =1
True
3) sin^2x -csc^2x +cos^2x +sec^2x -tan^2x +cot^2x =1
LHS = sin^2x +cos^2x + (sec^2x -tan^2x) +( (cot^2x -csc^2x)
= 1 -(1) +1
= 1
True
4) cosx *secx = cosx/cosx =1
True
5) 2cos^2x -cos2x =1
cos2x = 2cos^2x -1
So, 2cos^2x -cos2x =1
So, True
6) sin^x +cos^x =1
True
7) tanx*cotx +cosx*secx -sinxcscx =1
LHS tanx/tanx +cosx/cosx -sinx/sinx
= 1+1-1
=1
8) cos2x = 1-2sin^2x =1
So, cos2x +2sin^2x =1
So, True
