27 let x POI Mu a Find the factorial moment generating funct
     27. let x  POI (Mu) (a) Find the factorial moment generating function (FMGF) of X, Gx(t). (b) Use Gx(t) to find E(X). (c) Use Gx(t) to find E[X(x - 1)). Suppose the X  POI(10). (a) Find P[5  
  
  Solution
This is Poisson Distribution.
Mean = 10
For Poisson , = Var(X) = 10 ,
Therefore,
Standard Deviation = sqrt(10) = 3.1623
In general,
P(x; ) = (e-) (x) / x!
a)
P[5<X<15] = P[X<15] - P [X<=5]
= (e-10) (106) / 6! + (e-10) (107) / 7! + ........ + (e-10) (1014) / 14!
= 0.9165 - 0.0671
= 0.8494 Answer
b)
P(5 < Y < 15) = p(10 5 < Y < 10 + 5)
= P(|Y 10| < 5) 1 sqrt(10)/25
= sqrt(10)/25
= 0.1265 Answer
c)
P[1-k< X/ < 1+k]
= P[-k< X < +k]
= P[|X-| < k] >= 1 - sqrt() / ^2k^2
=> P[|X-| < k] >= 1 - 1/ 3/2k^2

