Find the number of terms of the arithmetic sequence with a1
Find the number of terms of the arithmetic sequence with a1 = -2, d = 1/4, and s = 21.
Solution
sn=(n/2)(2a1+(n-1)d)
21=(n/2)(2(-2)+(n-1)(1/4))
42= n(-4 +(n-1).25)
42=n(-4 + .25n-.25)
.25n2 -4n -.25n -42=0
.25n2-4.25n -42=0
.25(n2 -17n -168)=0
n2-17n -168=0
(n-24)(n+7)=0
n=24,-7
And number of terms cant be -7
Therefore the answer is n=24
