Let W p P3 p1 p2 0 p1 0 a Show W is a subspace of P3 b
Let W = {p P3 : p(1) + p(2) = 0, p\'(1) = 0}.
(a) Show W is a subspace of P3.
(b) Find a basis of W.
Solution
a)
1. 0 belongs to this set
2. Let, p,q belong to this set
(p+q)(1)+(p+q)(2)=p(1)+p(2)+q(1)+q(2)=0
(p+q)\'(1)=p\'(1)+q\'(1)=0
Hence it is a subspace
b)
General polynomial in P3
is :f(x)= a+bx+cx^2+dx^3
f\'(x)=b+2cx+3dx^2
f\'(1)=b+2c+3d=0 hence, b=-2c-3d
f(1)+f(2)=a+b+c+d+a+2b+4c+8d=2a+3b+5c+9d=0
a=-(3b+5c+9d)/2=-(-6c-9d+5c+9d)/2=3c/2
f(x)= a+bx+cx^2+dx^3=3c/2-(2c+3d)x+cx^2+dx^3=(3/2-2x+x^2)c+(-3x+x^3)d
So basis is {3/2-2x+x^2,-3x+x^3}
