The designer of a garbage truck that lifts rollout container
The designer of a garbage truck that lifts roll-out containers must estimate the mean weight the truck will lift at each collection point. A random sample of 325 containers of garbage on current collection routes yielded x=75.3 lb, s = 12.8 lb. Construct a 99.8% confidence interval for the mean weight the trucks must lift each time.
Solution
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.001          
 X = sample mean =    75.3          
 z(alpha/2) = critical z for the confidence interval =    3.090232306          
 s = sample standard deviation =    12.8          
 n = sample size =    325          
               
 Thus,              
 Margin of Error E =    2.194115157          
 Lower bound =    73.10588484          
 Upper bound =    77.49411516          
               
 Thus, the confidence interval is              
               
 (   73.10588484   ,   77.49411516   ) [ANSWER]

