Let rt t2 1 4 4t calculate the derivative rt a at t 7 assu
Solution
1.
To calculate derivative r(t).a(t):
d/dt[r(t).a(t)]= r’(t)a(t)+r(t)a’(t) [product rule]
Given that r(t)=<t2, 1-t, 4t>
Differentiate the above equation
r’(t)=<2t, -1,4>
At t=7 r(7)=<49,-6,28>
r’(7)=<14,-1,4>
Here a(7)=<-1,-6,8>
a’(7)=<5,-1,-2>
d/dt[r(t).a(t)]= r’(7)a(7)+r(7)a’(7)
=<14,-1,4><-1,-6,8>+<49,-6,28><5,-1,-2>
=<231,12,-24>
2.
To evaluate the limit
r(t)=<t-2, sin t, 7>
r’(t)=?
Need more information
3.
To find the solution of r(t):
Given r’(t) = <sin8t, sin8t, 3t>
r(0) = <9, 9, 6>
Here dr/dt =<dx/dt ,dy/dt ,dz/dt > = <sin8t, sin8t, 3t>
Sin8t=dx/dt Sin8t=dy/dt 3t=dz/dt
Integrate the above equations
x=-1/8cos(8t)+c but x(0)=9
then 9 = -1/8+c
c=73/8
similarly y = 1/8(73-cos(8t))
z=3/2*t2+c1 but z(0)=6
then 6 = 3/2*0+c1
c1 = 6
r(t)=< 1/8(73-cos(8t)), 1/8 (73-cos(8t)) 3/2[t2+4]>

