4 Sums of independent random variables Let 1 Xn independent
Solution
Given X1, X2, X3 ,….. Xn, are independent random variables and Y= X1, X2,…. Xn, that implies Y= Xi
Let us consider for X1 binomial(n1,p) X2 binomial(n2,p) be independent random variables then X1 +X2 binomial(n1+n2,p)
According to the property of moment generating function
If X1, X2, X3 ,….. Xn, are independent random variables then Mx1+x2+……..xn(t) = Mx1(t) Mx2(t)……….Mxn(t)
Xi binomial(ni,p) for all i=1,2,….n
Let us consider for X1 pois(i) X2 pois(i) be independent random variables then X1 +X2 pois(1+i) According to the property of moment generating function
If X1, X2, X3 ,….. Xn, are independent random variables then Mx1+x2+……..xn(t) = Mx1(t) Mx2(t)……….Mxn(t)
Xi pois(1 +2+…. +n ) for all i=1,2,….n
The moment generating function is Mx(t) = pr(1-qet)-r
and Mx1+x2(t) = Mx1(t) Mx2(t)
If X1, X2, X3 ,….. Xn, are independent random variables then Mx1+x2+……..xn(t) = Mx1(t) Mx2(t)……….Mxn(t)
Xi neg bionor(r1r2……..rn, p)for all i=1,2,….n
For this distribution we can’t interpret Y
For this distribution we can’t interpret Y
