A student claims that first year college students must study
Solution
4.
A)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   >=   150  
 Ha:    u   <   150  
               
 As we can see, this is a    left   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.05   ,      
 alpha =    0.05          
 zcrit =    -   1.644853627      
               
 Getting the test statistic, as              
               
 X = sample mean =    142          
 uo = hypothesized mean =    150          
 n = sample size =    101          
 s = standard deviation =    65          
               
 Thus, z = (X - uo) * sqrt(n) / s =    -1.236907769          
               
 Also, the p value is              
               
 p =    0.108060663          
               
 As |z| < 1.649, and P > 0.05, we   FAIL TO REJECT THE NULL HYPOTHESIS.  
Ther is no significant evidence that the mean time in studying is less than 150 minutes.
******************
b)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    142          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    65          
 n = sample size =    101          
               
 Thus,              
 Margin of Error E =    10.63848845          
 Lower bound =    131.3615115          
 Upper bound =    152.6384885          
               
 Thus, the confidence interval is              
               
 (   131.3615115   ,   152.6384885   ) [ANSWER]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


