A random sample of five pairs of observations were selected
A random sample of five pairs of observations were selected from two
populations. The sample data are in the following table:
Pair
Value from Population 1
Value from Population 2
1
28
22
2
31
27
3
24
20
4
30
27
5
22
20
Test Ho : µd = 0 vs. HA : µd 0 with 5% significance.
| Pair | Value from Population 1 | Value from Population 2 | 
| 1 | 28 | 22 | 
| 2 | 31 | 27 | 
| 3 | 24 | 20 | 
| 4 | 30 | 27 | 
| 5 | 22 | 20 | 
Solution
Let ud = u2 - u1.              
 Formulating the null and alternative hypotheses,              
               
 Ho:   ud   =   0  
 Ha:   ud   =/   0  
At level of significance = 0.05
As we can see, this is a    two   tailed test.      
               
 Calculating the standard deviation of the differences (third column):              
               
 s =    2.1514618          
               
 Thus, the standard error of the difference is sD = s/sqrt(n):              
               
 sD =    0.962162967          
               
 Calculating the mean of the differences (third column):              
               
 XD =    -3.8          
               
 As t = [XD - uD]/sD, where uD = the hypothesized difference =    0   , then      
               
 t =    -3.949434897          
               
 As df = n - 1 =    4          
               
 Then the critical value of t is              
               
 tcrit =    +/-   2.776445105      
               
 Thus, As t < -2.776, we   WE REJECT THE NULL HYPOTHESIS.          
               
 Also, using p values,              
               
 p =        0.016825982      
               
 Also, comparing this p < 0.05,   WE REJECT THE NULL HYPOTHESIS.          


