Find a solution of x dydx y2 y that passes through the ind
Find a solution of x dy/dx = y^2 ? y that passes through the indicated points. (a) (0, 1) y = ? (b) (0, 0) y = ? (c)1 4 , 1 4 y = ? (d) 4, 1 6 y = ?
Solution
x*dy/dx = y^2 - y
dy/(y^2 - y) = dx/x
1/(y-1) - 1/y = dx/x
Integrating :
ln|y - 1| - ln|y| = ln|x| + D
ln|(y - 1)/y| = ln|Cx|
1 - 1/y = Cx
1/y = 1 - Cx
y = 1 / (1 - Cx)
a)
(0 , 1) :
1 = 1 / (1 - C*0)
1 = 1/1
1 = 1
ALWAYS TRUE
So, c can be anything
Let c = 1...
y = 1 / (1 - x) --> ANSWER
b)
(0 , 0)
y = 1 / (1 - Cx)
0 = 1 / (1 - C*0)
0 = 1 / 1
0 = 1
ALWAYS FALSE
So, no solution exists
-----------------------------------------------
c)
14 = 1 / (1 - 14C)
1 - 14C = 1/14
14C = 1 - 1/14
14C = 13/14
C = 13/196
So, y = 1 / (1 - 13x/196)
-------------------------------------------------
d)
(4 , 16)
16 = 1 / (1 - 4C)
1 - 4C = 1/16
1 - 1/16 = 4C
4C = 15/16
C = 15/64
So, y = 1 / (1 - 15x/64)

