Prove one the two following theorems of Cantor The set of ra
Solution
2nd question:
a. (A B)\' = A\' U B\'
Let M = (A B)\' and N = A\' U B\'
Let x be an arbitrary element of M then x M x (A B)\'
x (A B)
x A or x B
x A\' or x B\'
x A\' U B\'
x N
Therefore, M N …………….. (i)
Again, let y be an arbitrary element of N then y N y A\' U B\'
y A\' or y B\'
y A or y B
y (A B)
y (A B)\'
y M
Therefore, N M …………….. (ii)
Now combine (i) and (ii) we get; M = N i.e. (A B)\' = A\' U B\'
b) (A U B)\' = A\' B\'
Let P = (A U B)\' and Q = A\' B\'
Let x be an arbitrary element of P then x P x (A U B)\'
x (A U B)
x A and x B
x A\' and x B\'
x A\' B\'
x Q
Therefore, P Q …………….. (i)
Again, let y be an arbitrary element of Q then y Q y A\' B\'
y A\' and y B\'
y A and y B
y (A U B)
y (A U B)\'
y P
Therefore, Q P …………….. (ii)
Now combine (i) and (ii) we get; P = Q i.e. (A U B)\' = A\' B\'
Question 6:
x= 1 mod 4
so lets say x=1+4t
x=8 mod 9 ===> 1+4t=8 mod 9
===> 4t= 7 mod 9
====> 4t= (9+7) mod 9
=====> 4t=16 mod 9
=====> t= 4 mod 9
======> t= 4+9s
since x=1+4t
====> x=1+4(4+9s)
====> x=1+16+36s
====> x=17+36 s where s is an integer
so solution is x= 17+36 s

