Verify the identity 1sinx1xsinx1tan2x2tanxsecxsec2Solution1s
Verify the identity.
Solution
[(1/sinx)+1]*[(1/sinx)-1]
=[(1+sinx)/sinx]*[(1-sinx)/sinx]
=(1+sinx)/(1-sinx)
multiply and divide by 1+sinx
=[(1+sinx)(1+sinx)]/[(1-sinx)(1+sinx)]
=[1+2sinx+sin2x]/[1-sin2x]
write 1-sin2x =cos2x since cos2x+sin2x=1
=[1+2sinx+sin2x]/[cos2x]
=(1/cos2x)+(2sinx/cos2x)+(sin2x/cos2x)
=sec2x +2(sinx/cosx)(1/cosx) +(tan2x)
=sec2x +2tanxsecx+tan2x
=tan2x +2tanxsecx+sec2x
so [(1/sinx)+1]*[(1/sinx)-1]=tan2x +2tanxsecx+sec2x
![Verify the identity. 1/sinx+1/x/sinx-1=tan^2x+2tanxsecx+sec^2Solution[(1/sinx)+1]*[(1/sinx)-1] =[(1+sinx)/sinx]*[(1-sinx)/sinx] =(1+sinx)/(1-sinx) multiply and Verify the identity. 1/sinx+1/x/sinx-1=tan^2x+2tanxsecx+sec^2Solution[(1/sinx)+1]*[(1/sinx)-1] =[(1+sinx)/sinx]*[(1-sinx)/sinx] =(1+sinx)/(1-sinx) multiply and](/WebImages/7/verify-the-identity-1sinx1xsinx1tan2x2tanxsecxsec2solution1s-989579-1761508710-0.webp)