Verify the identity 1sinx1xsinx1tan2x2tanxsecxsec2Solution1s


Verify the identity.

1/sinx+1/x/sinx-1=tan^2x+2tanxsecx+sec^2

Solution

[(1/sinx)+1]*[(1/sinx)-1]

=[(1+sinx)/sinx]*[(1-sinx)/sinx]

=(1+sinx)/(1-sinx)

multiply and divide by 1+sinx

=[(1+sinx)(1+sinx)]/[(1-sinx)(1+sinx)]

=[1+2sinx+sin2x]/[1-sin2x]

write 1-sin2x =cos2x since cos2x+sin2x=1

=[1+2sinx+sin2x]/[cos2x]

=(1/cos2x)+(2sinx/cos2x)+(sin2x/cos2x)

=sec2x +2(sinx/cosx)(1/cosx) +(tan2x)

=sec2x +2tanxsecx+tan2x

=tan2x +2tanxsecx+sec2x

so [(1/sinx)+1]*[(1/sinx)-1]=tan2x +2tanxsecx+sec2x

 Verify the identity. 1/sinx+1/x/sinx-1=tan^2x+2tanxsecx+sec^2Solution[(1/sinx)+1]*[(1/sinx)-1] =[(1+sinx)/sinx]*[(1-sinx)/sinx] =(1+sinx)/(1-sinx) multiply and

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site