A random sample of n100 observations produced a mean of x36

A random sample of n=100 observations produced a mean of x=36 with a standard deviation of s=2.

(a) Find a 90% confidence interval for
Lower-bound:  Upper-bound:

(b) Find a 95% confidence interval for
Lower-bound:  Upper-bound:

(c) Find a 99% confidence interval for
Lower-bound:  Upper-bound:

Solution

A)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    36          
z(alpha/2) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    2          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.328970725          
Lower bound =    35.67102927          
Upper bound =    36.32897073          
              
Thus, the confidence interval is              
              
(   35.67102927   ,   36.32897073   ) [ANSWER]

********************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    36          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    2          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.391992797          
Lower bound =    35.6080072          
Upper bound =    36.3919928          
              
Thus, the confidence interval is              
              
(   35.6080072   ,   36.3919928   ) [ANSWER]

*********************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    36          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    2          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.515165861          
Lower bound =    35.48483414          
Upper bound =    36.51516586          
              
Thus, the confidence interval is              
              
(   35.48483414   ,   36.51516586   ) [ANSWER]

A random sample of n=100 observations produced a mean of x=36 with a standard deviation of s=2. (a) Find a 90% confidence interval for Lower-bound: Upper-bound:
A random sample of n=100 observations produced a mean of x=36 with a standard deviation of s=2. (a) Find a 90% confidence interval for Lower-bound: Upper-bound:

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site