The manager of a paint supply store wants to estimate the ac
The manager of a paint supply store wants to estimate the actual amount of paint contained in 1-gallon cans purchased from a nationally known manufacturer. The manufacturer’s specifications state that the standard deviation of the amount of paint is equal to 0.03 gallon. A random sample of 36 cans is selected and the sample mean amount of paint per 1-gallon can is 0.998 gallon.
Construct a 95% confidence interval estimate for the population mean amount of paint included in a 1-gallon can.
Step 1: figure out a point estimate x-bar:
Step 2: Is (population standard deviation) known? If yes, then find sample sizenand /n
Step 3: find the confidence level (1-) and the critical value z(1-/2).
Step 4: construct a confidence interval for population mean (the actual amount of paint contained in 1-gallon cans purchased). Please interpret the confidence interval.
Solution
1.
Xbar = 0.998 gal [ANSWER]
******************
2.
sigma = 0.03
n = 36
signa/sqrt(n) = 0.03/sqrt(36) = 0.005 [ANSWER]
***************
3.
1 - alpha = 0.95 [ANSWER]
Here,
alpha/2 = (1 - confidence level)/2 =    0.025          
 z(alpha/2) = critical z for the confidence interval =    1.959963985   [ANSWER]
***************************
4.
 Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    0.998          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    0.03          
 n = sample size =    36          
               
 Thus,              
 Margin of Error E =    0.00979982          
 Lower bound =    0.98820018          
 Upper bound =    1.00779982          
               
 Thus, the confidence interval is              
               
 (   0.98820018   ,   1.00779982   ) [ANSWER]
Thus,we are 95% confident that the true mean amount of paint per gallon is from 0.9882 gal to 1.0078 gal. [ANSWER]


