Find all t such that t4 2 3 t90t1 3 4 t20 Solutiona detA 0 o
Find all t such that |t-4 2 3 t-9|=0|t-1 3 4 t-2|=0
Solution
a) detA =0 of given matrix:
determinant of A : (t-4)(t- 9) - 6 =0
t^2 - 13t +36 =0
Use quadratice formula to solve equation : t = ( 13 + / - sqrt( 13^2 - 4*36) )/2
=( 13 + /- 5 )/2
t = 28/2 = 14
t = 8/2 = 4
Solution : t= 4 , 14
b) detA =0
(t-1)(t-2) -12 =0
t^2 -3t +2 -12 =0
t^2 -3t -10 =0
Solve the above quadratic equation to get values of t
t^2 -5t +2t -10 =0
t( t -5) +2( t-5) =0
(t+2)(t-5) =0
t = -2 and t=5
Solution : t = -2 , 5
