Solve by using the method of undetermined coefficients IVP y
Solve by using the method of undetermined coefficients IVP y\" + 4y + = (t + 3) e^-2t subject to y(0) y(0) = 5
Solution
First we solve homogeneous ode
y\'\'+4y\'+4y=0
Let, y=exp(kt) ,substituting gives
k^2+4k+4=0
k=-2
y=exp(-2t)(At+B)
Since, exp(-2t) and t exp(-2t) are already solutions to homogeneous ode so for particular solution we take teh guess
yp=exp(-2t)(Ct^2+Dt^3)
yp\'=-exp(-2t)t(-2C+2Ct-3Dt+2Dt^2)
yp\'\'=2 exp(-2t) (C-4Ct+3Dt+2Ct^2-6Dt^2+2Dt^3)
Substituting in ode gives
exp(-2t) (2C+6Dt)=(t+3)exp(-2t)
Comparing coefficients gives
2C=3,C=3/2
6D=1,D=1/6
Hence,
y=exp(-2t)(At+B)+exp(-2t)(3t^2/2+t^3/6)
