Hi Im having quite a bit of difficulty with this question It
Hi, Im having quite a bit of difficulty with this question. It requires some approach using R aswell. Any help will be gladly appreciated.
Solution
a)
The convention is to write N(mean, variance).
Hence, here,
X~N(220, 12^2) mm or
X~N(220, 144) mm [ANSWER]
***********
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    192      
 u = mean =    220      
           
 s = standard deviation =    12      
           
 Thus,          
           
 z = (x - u) / s =    -2.333333333      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   -2.333333333   ) =    0.009815329 [ANSWER]
***************
C)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    180      
 x2 = upper bound =    195      
 u = mean =    220      
           
 s = standard deviation =    12      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -3.333333333      
 z2 = upper z score = (x2 - u) / s =    -2.083333333      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.00042906      
 P(z < z2) =    0.018610425      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.018181365 [ANSWER]
******************
d)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.0475      
           
 Then, using table or technology,          
           
 z =    -1.669592577      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    220      
 z = the critical z score =    -1.669592577      
 s = standard deviation =    12      
           
 Then          
           
 x = critical value =    199.9648891   [ANSWER]
*****************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


