Verify that a sin x cos x2 sin2x 1 b 11costheta csc2thet
Verify that:
a) (sin x + cos x)^2 = sin(2x) + 1
b) 1/(1+cos(theta)) = csc^2(theta) - csc(theta)cot(theta)
Solution
a) (sin x + cos x)^2 = sin(2x) + 1
LHS = sin^2 x + cos^2 x + 2*sin x*cos x
= 1 + sin2x = RHS
b) 1/(1+cos ) = csc^2() - csc()cot()
RHS = (1/sin^2 ) – (1/sin )(cos /sin )
= (1/sin^2 ) - (cos /sin^2 )
= (1 - cos )/sin^2
= (1 – cos^2 )/[ sin^2 *(1 + cos )]
= 1/[(1 + cos )] = LHS
