A Gallup poll asked a sample of Canadian adults if they thou
A Gallup poll asked a sample of Canadian adults if they thought the law should allow doctors to end the life of a patient who is in great pain and near death if the patient makes a request in writing. The poll included 255 people in Quebec, 179 of whom agreed that doctor-assisted suicide should be allowed.
(a) What is the margin of error of the large-sample 99.5% confidence interval for the proportion of all Quebec adults who would allow doctor-assisted suicide?
 MoE:
(b) How large a sample is needed to get a ±3 percentage point margin of error (this is very commonly used)? Use the previous sample as a pilot study to get p*.
 (You may need four decimal places in your critical value to solve this problem.)
 Sample size:  
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.701960784          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.028643299          
               
 Now, for the critical z,              
 alpha/2 =   0.0025          
 Thus, z(alpha/2) =    2.807033768          
 Thus,              
Margin of error = z(alpha/2)*sp = 0.080402708 [ANSWER]
********************
b)
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.0025  
        
       
 Using a table/technology,      
       
 z(alpha/2) =    2.807033768  
       
 Also,      
       
 E =    0.03  
 p = 179/255 = 0.701960784  
       
 Thus,      
       
 n =    1831.635395  
       
 Rounding up,      
       
 n =    1832   [ANSWER]
           


