Write 8sin3t9cos3t in the form A sin Bt using sum or differe
Write 8sin(3t)+9cos(3t) in the form A sin (Bt+) using sum or difference formulas.
Solution
-8sin(3t) + 9cos(3t) = (9^2 + 8^2)[ (-8/(9^2 + 8^2))sin 3t + (9/(9^2 + 8^2))cos 3t ]
 = 145 * [ (-8/145)sin 3t + (9/145)cos 3t ]
 and we choose :
 A = 145
  = artan(-9/8) <--- artan is an odd function
 then :
 sin() = 9/145 and
 cos() = -8/145
 so the get :
 -8sin(3t) + 9cos(3t) = A [ cos() *sin 3t + sin() * cos 3t ]
 = A sin( 3t + )
 
 conclusion :
 A = 145
 B =3
  = artan(-9/8) # -48.4° = 311.6 degree

