Find a particular solution to y16y32sec4tSolutiony16y32sec4t
Find a particular solution to y??+16y=?32sec(4t).
Solution
y\"+16y=-32sec(4t)
Auxiliary equation D^2+16=0
D= +4i, -4i
Complementary function
Yc = C1 cos(4t) + C2 sin(4t)
Y1 = cos(4t) , Y2= sin(4t)
W= 4
Particular Integral:
Yp= -Y1 Integral Y2 T/W dt + Y2 Integral Y1 T/W dt
Where T= -32 sec(4t)
Yp= - cos(4t) Integral sin(4t) (-32)sec(4t)/4 dt +
sin(4t) Integral cos(4t) (-32)sec(4t)/4 dt
Yp= 8 cos(4t) Integral sin(4t) sec(4t) dt - 8 sin(4t) Integral
( cos(4t) sec(4t) dt )
Yp= -8t sin(4t) - cos(4t) - cos(4t) ln(|sin^2(4t) -1|)
Y= Yc+Yp
Y= C1 cos(4t) + C2 sin(4t) -8t sin(4t) - cos(4t) -
cos(4t) ln(|sin^2(4t-1|)
