1 A grower believes that one in five of his citrus trees are
1) A grower believes that one in five of his citrus trees are infected with the citrus red mite. How large a sample should be taken if the grower wishes to estimate the proportion of his trees that are infected with citrus red mite to within 0.07 with probability 0.95?
2) A random sample of n = 400 observations from a binomial population produced x = 161 successes. Find a 90% confidence interval for p.
from....to....
3) A college student organization wants to start a nightclub for students under the age of 21. To assess support for this proposal, they will select an SRS of students and ask each respondent if he or she would patronize this type of establishment. They expect that about 75% of the student body would respond favorably.
(a) What sample size is required to obtain a 95% confidence interval with an approximate margin of error of 0.046?
(b) Suppose that 55% of the sample responds favorably. Calculate the margin of error for the 95% confidence interval.
Solution
1.
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.025  
        
       
 Using a table/technology,      
       
 z(alpha/2) =    1.959963985  
       
 Also,      
       
 E =    0.07  
 p =    0.2  
       
 Thus,      
       
 n =    125.4353901  
       
 Rounding up,      
       
 n =    126   [ANSWER]
***************************
2.
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.4025          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.024520081          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.040331944          
 lower bound = p^ - z(alpha/2) * sp =   0.362168056          
 upper bound = p^ + z(alpha/2) * sp =    0.442831944          
               
 Thus, the confidence interval is              
               
 (   0.362168056   ,   0.442831944   ) [ANSWER]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


