Find the exact solution to the system of equations Check you
Solution
15) Given that y = x2-6x+1 ------- Eq (1)
y + 2x= 6 ---------- Eq (2)
From eq (2) ,
y = 6-2x -------------- Eq(3)
From Eqs (1) and (3),
x2-6x+1 = 6-2x
x2-4x-5 = 0
x2 - 5x +x -5 = 0
x (x-5) +1 (x-5) = 0
(x-5) (x+1)= 0
x = 5 ,-1
Substitute values of x in Eq (3) to get values of y,
y = 6-2x -------------- Eq(3)
x = 5 then y = 6- 2.5 = - 4
x = -1 then y = 6 -2 . -1 = 8
Therefore,
solutions are
(x,y) = (5,-4) , (-1,8)
16) 2x2-4x = y+ 1 -------- Eq (1)
x+y = 1 ------- Eq (2)
From Eq (2),
y = 1-x ------ Eq(3)
Substitute value of y in eq (1),
Eq (1) -----> 2x2-4x = y+ 1
2x2-4x = 1-x+ 1 [ y = 1-x ]
2x2-3x -2 = 0
2x2 -4x+x -2 =0
2x(x-2) + (x-2) = 0
(x-2) (2x+1) = 0
x = 2 , x = -1/2
Substitute values of x in Eq (3) to get values of y,
Eq (3) is y = 1-x
x =2 then y = 1-2 = -1
x = -1/2 then y = 1- (-1/2) = 3/2
Therefore,
solutions are
(x,y) = (2,-1) , (-1/2, 3/2)

