Suppose x is a continuous random variable with the pdf fx x2
Solution
b)
i.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    100      
 u = mean =    80      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    2      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   2   ) =    0.977249868 [ANSWER]
******************
ii.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    70      
 u = mean =    80      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    -1      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -1   ) =    0.841344746 [ANSWER]
******************
iii.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.975      
           
 Then, using table or technology,          
           
 z =    1.959963985      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    80      
 z = the critical z score =    1.959963985      
 s = standard deviation =    10      
           
 Then          
           
 x = critical value =    99.59963985   [ANSWER]  
*******************************************
Hi! Please submit the next/other parts as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


