Solve the initial value problem y 3y 10y 24y 0 y0 0 y0

Solve the initial value problem {y\"\' + 3y\" - 10y\' - 24y = 0 y(0) = 0 y\'(0) = 10 y\"(0) = 20

Solution

Given that

y\'\'\' + 3y\'\' - 10y\' - 24y = 0

The D-operator form is ,

(D3 + 3D2 -10D - 24 ) y = 0

The auxialary equation is,

m3 + 3m2 -10m - 24 = 0

( m - 3 ) (m + 4) (m + 2) = 0

m1 = 3 , m2 = -4 , m3 = -2

The roots are real and distinct .

The solution is , y(x) = c1 em1x + c2 em2x + c3 em3x

   y(x) = c1 e3x + c2 e-4x + c3 e-2x.....................................1

Given that

y(0) = 0 , y\'(0) = 10 , y\'\'(0) = 20

At y(0) = 0

   y(0) = c1 e3.0 + c2 e-4.0 + c3 e-2.0

0 = c1 + c2 + c3     [ since , e0 = 1 ]

   c1 + c2 + c3 = 0........................................2

At y\'(0) = 10

y(x) = c1 e3x + c2 e-4x + c3 e-2x

y\'(x) = c1 e3x.3 + c2 e-4x.-4 + c3 e-2x.-2 [ since, d/dx(eax) = aex , a = constant ]

  y\'(x) = 3c1 e3x - 4c2 e-4x - 2c3 e-2x

  y\'(0) = 3c1 e3.0 - 4c2 e-4.0 - 2c3 e-2.0

10 = 3c1 - 4c2 - 2c3 [ since , e0 = 1 ]

3c1 - 4c2 - 2c3 = 10 ...................................3

At y\"(0) = 20

   y(x) = c1 e3x + c2 e-4x + c3 e-2x

  y\'(x) = 3c1 e3x - 4c2 e-4x - 2c3 e-2x

  y\'\'(x) = 3c1 e3x.3 - 4c2 e-4x.-4 - 2c3 e-2x.-2

y\'\'(x) = 9c1e3x + 16c2e-4x + 4c3e-2x

y\'\'(0) = 9c1e3.0 + 16c2e-4.0 + 4c3e-2.0

   20 = 9c1 + 16c2 + 4c3    [ since , e0 = 1 ]

9c1 + 16c2 + 4c3 = 20...........................................4

Solve equations 2 and 3

Multiply the equation 2 with 3

  c1 + c2 + c3 = 0

   3c1 + 3c2 + 3c3 = 0

3c1 = - 3c2 - 3c3.........................5

From equation 3

   3c1 - 4c2 - 2c3 = 10

3c1 = 10 + 4c2 + 2c3 .........................6

Equating the equations 5 and 6

  - 3c2 - 3c3 =10 + 4c2 + 2c3

   7c2 +5c3 = -10................................7

Solve equations 3 and 4

  3c1 - 4c2 - 2c3 = 10

Multiply equation 3 with 3

    9c1 - 12c2 - 6c3 = 30

    9c1 = 30 +12c2 + 6c3 .............................8

From equation 4

  9c1 + 16c2 + 4c3 = 20

  9c1 =20 -16c2 - 4c3 ..............................9

Equating the equations 8 and 9

30 +12c2 + 6c3 =20 -16c2 - 4c3

   28c2 +10c3= -10 ..............................10

Solve equations 7 and 10

   7c2 +5c3 = -10

Multiply equation 7 with 4

28c2+ 20c3 = -40

28c2 = -40 - 20c3................................11

From equation 10

28c2 +10c3= -10

28c2 = -10 - 10c3.........................12

Equating the equations 11 and 12

   -40 - 20c3 = -10 - 10c3

-10c3 = 30

c3 = -30/10

c3 = -3

Substitute c3 = -3 in    7c2 +5c3 = -10

7c2 + 5(-3) = -10

7c2 -15 = -10

7c2 = 5

c2 = 5/7

From equation 2

     c1 + c2 + c3 = 0

c1 + 5/7 - 3 = 0

c1 - 16/7 = 0

c1 = 16/7

Therefore,

c1 = 16/7 , c2 = 5/7 , c3 = -3

Substitute c1 , c2 , c3 in equation 1

y(x) = c1 e3x + c2 e-4x + c3 e-2x

   = (16/7)e3x + (5/7)e-4x - 3e-2x

Therefore,

The general solution is ,

y(x) =  (16/7)e3x + (5/7)e-4x - 3e-2x

 Solve the initial value problem {y\
 Solve the initial value problem {y\
 Solve the initial value problem {y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site