Solve the initial value problem y 3y 10y 24y 0 y0 0 y0
Solution
Given that
y\'\'\' + 3y\'\' - 10y\' - 24y = 0
The D-operator form is ,
(D3 + 3D2 -10D - 24 ) y = 0
The auxialary equation is,
m3 + 3m2 -10m - 24 = 0
( m - 3 ) (m + 4) (m + 2) = 0
m1 = 3 , m2 = -4 , m3 = -2
The roots are real and distinct .
The solution is , y(x) = c1 em1x + c2 em2x + c3 em3x
y(x) = c1 e3x + c2 e-4x + c3 e-2x.....................................1
Given that
y(0) = 0 , y\'(0) = 10 , y\'\'(0) = 20
At y(0) = 0
y(0) = c1 e3.0 + c2 e-4.0 + c3 e-2.0
0 = c1 + c2 + c3 [ since , e0 = 1 ]
c1 + c2 + c3 = 0........................................2
At y\'(0) = 10
y(x) = c1 e3x + c2 e-4x + c3 e-2x
y\'(x) = c1 e3x.3 + c2 e-4x.-4 + c3 e-2x.-2 [ since, d/dx(eax) = aex , a = constant ]
y\'(x) = 3c1 e3x - 4c2 e-4x - 2c3 e-2x
y\'(0) = 3c1 e3.0 - 4c2 e-4.0 - 2c3 e-2.0
10 = 3c1 - 4c2 - 2c3 [ since , e0 = 1 ]
3c1 - 4c2 - 2c3 = 10 ...................................3
At y\"(0) = 20
y(x) = c1 e3x + c2 e-4x + c3 e-2x
y\'(x) = 3c1 e3x - 4c2 e-4x - 2c3 e-2x
y\'\'(x) = 3c1 e3x.3 - 4c2 e-4x.-4 - 2c3 e-2x.-2
y\'\'(x) = 9c1e3x + 16c2e-4x + 4c3e-2x
y\'\'(0) = 9c1e3.0 + 16c2e-4.0 + 4c3e-2.0
20 = 9c1 + 16c2 + 4c3 [ since , e0 = 1 ]
9c1 + 16c2 + 4c3 = 20...........................................4
Solve equations 2 and 3
Multiply the equation 2 with 3
c1 + c2 + c3 = 0
3c1 + 3c2 + 3c3 = 0
3c1 = - 3c2 - 3c3.........................5
From equation 3
3c1 - 4c2 - 2c3 = 10
3c1 = 10 + 4c2 + 2c3 .........................6
Equating the equations 5 and 6
- 3c2 - 3c3 =10 + 4c2 + 2c3
7c2 +5c3 = -10................................7
Solve equations 3 and 4
3c1 - 4c2 - 2c3 = 10
Multiply equation 3 with 3
9c1 - 12c2 - 6c3 = 30
9c1 = 30 +12c2 + 6c3 .............................8
From equation 4
9c1 + 16c2 + 4c3 = 20
9c1 =20 -16c2 - 4c3 ..............................9
Equating the equations 8 and 9
30 +12c2 + 6c3 =20 -16c2 - 4c3
28c2 +10c3= -10 ..............................10
Solve equations 7 and 10
7c2 +5c3 = -10
Multiply equation 7 with 4
28c2+ 20c3 = -40
28c2 = -40 - 20c3................................11
From equation 10
28c2 +10c3= -10
28c2 = -10 - 10c3.........................12
Equating the equations 11 and 12
-40 - 20c3 = -10 - 10c3
-10c3 = 30
c3 = -30/10
c3 = -3
Substitute c3 = -3 in 7c2 +5c3 = -10
7c2 + 5(-3) = -10
7c2 -15 = -10
7c2 = 5
c2 = 5/7
From equation 2
c1 + c2 + c3 = 0
c1 + 5/7 - 3 = 0
c1 - 16/7 = 0
c1 = 16/7
Therefore,
c1 = 16/7 , c2 = 5/7 , c3 = -3
Substitute c1 , c2 , c3 in equation 1
y(x) = c1 e3x + c2 e-4x + c3 e-2x
= (16/7)e3x + (5/7)e-4x - 3e-2x
Therefore,
The general solution is ,
y(x) = (16/7)e3x + (5/7)e-4x - 3e-2x


