Let p be an odd prime Let T p12 that T Solutionx1p12 Note Fo
Let p be an odd prime. Let T (p-1)/2)!. that T
Solution
x=1*....*(p-1)/2
Note,
For every 1<=k<=(p-1)/2 there is a corresponding p-1>=p-k>=(p+1)/2
SO that
p-k=-k mod p
x^2=1*1*....*(p-1)/2*(p-1)/2=1*(-(p-1))....*k*(-(p-k))*...*(p-1)/2*(-(p+1)/2
=(-1)^{(p-1)/2}(p-1)! modulo p
p=1 mod 4
p=4k+1
(p-1)/2=2k
SO,
(-1)^{(p-1)/2}=1
So
x^2=(p-1)! modulo p
By Wilson\'s Theorem
(p-1)!=-1 modulo p
Hence
x^2=-1 modulo p
