Verify the following identities cos3 theta 1 sin theta 1 s
Verify the following identities:
cos3 theta / 1+ sin theta = 1- sin theta / sec theta
Hint: Write cos3 theta = cos theta cos2 theta
and use pythagorean identity followed by a factorization. Lastly, recall cos theta= 1/ sec theta
Solution
cos^3 theta / (1+ sin theta) = (1- sin theta) / (sec theta)
As cos^3 theta = cos theta* cos^2 theta
RHS : cos^3 theta / (1+ sin theta) = cos theta* cos^2 theta /(1+ sin theta)
= costheta( 1- sin^2theta) / (1+ sin theta)
= costheta( 1 + sintheta)(1-sintheta)/( 1+sintheta)
= costheta( 1- sintheta)
= costheta - sintheta*costheta
Now costheta = 1/sectheta
So, = costheta - sintheta*costheta
= costheta - sintheta/sectheta
= RHS
