Find the exact value of sin alpha beta if sin alpha 45 and
Find the exact value of sin (alpha + beta) if sin alpha = -4/5 and sin beta = -5/13, with alpha in quadrant IV and B in quadrant III sin (alpha + B) = Use Identities to simplify cos^2 B - 8 sin^2 B/1 - 9 sin^2 B = Determine if equation is positive negative or both signs make the equation correct sin 146.0 degree = plusminus squareroot 1 - cos 292 degree/2 Simplify csc x/cos x + sec x/sin x What is the sum. 2 pi/6 + pi/4 =
Solution
3)given sina =-4/5, sinb =-5/13
cosa=((52-42))/5 =3/5
cosb=-((132-52))/13 =-12/13
sin(a+b)=sinacosb +cosasinb
=(-4/5)(-12/13) +(3/5)(-5/13)
=(48/65)-(15/65)
=33/65
B) (cos2B-8sin2B)/(1-9sin2B)
we know ,sin2B+cos2B=1 is an identity =>cos2B=1-sin2B
= ((1-sin2B)-8sin2B)/(1-9sin2B)
=(1-9sin2B)/(1-9sin2B)
=1
c)sin146o=+[(1-cos292o)/2]
d)(cscx/cosx)+(secx/sinx)
=((1/sinx)/cosx)+((1/cosx)/sinx)
=(1/(sinxcosx))+(1/(sinxcosx))
=2/(sinxcosx)
=2 cscx secx
E)(2pi/6)+(pi/4)
=(pi/3)+(pi/4)
=(4pi +3pi)/13
=7pi/12
