If A and B are indepebent show that A and B are also indepe
If A and B are indepebent show that A \' and B\' are also independent
Solution
if A and B are independent than we know that,
P(A) + P(A\') = 1 -------------------1)
and,
P(A B\') + P(A\' B\') = P(B\')
P(A B\') = P(B\')P(A\' B\'). -----------------------2)
and we need to prove that P(A\' B\') = P(A\') · P(B\').
also we know that,
P(B) + P(B\') = 1
P(A B\') + P(A B) = P(A) so,
P(A B) = P(A) - P(A B\') --------------------3)
as A and B are independent
P(A B) = P(A) P(B) --------------4)
but,
P(A) · P(B) = P(A)[1 P(B\')] = P(A) P(A) · P(B\') ----------5)
from 3) ,4) ,5) we have,
P(A) - P(A B\') = P(A) P(A) · P(B\')
so,
P(A B\') = P(A) · P(B\') ---------------6)
from 1) and 2) we have,
P(A) + P(A\') = 1
P(A B\') = P(B\')P(A\' B\') -----------7)
from 6) P(A B\') = P(A) · P(B\')
so,
P(A) · P(B\') = P(B\')P(A\' B\')
P(B\')P(A\' B\') = P(A) · P(B\')
but ,
P(A) · P(B\') = [1P(A\')]P(B\') = P(B\')P(A\')·P(B\')
so,
P(B\')P(A\' B\') = P(B\')P(A\')·P(B\')
-P(A\' B\') = P(A\')·P(B\')
P(A\' B\') = P(A\')·P(B\')
so we have prove that P(A\' B\') = P(A\') · P(B\')
hnece A\' and B\' are independent.

