Given that logJ025 K clearly show why logJ16 2KSolutionlog
Given that log_J(0.25) = K, clearly show why log_J(16) = -2K.
Solution
logJ(0.25) = K
Prove logJ(16) = -2K
logJ(0.25) = K
logJ(25/100) = K
logJ(1/4) = K
logJ(2^-2) = K
-2logJ(2) = K
logJ(2) = -K/2
Multiply both sides by 4
4logJ(2) = -2K
logJ(2^4) = -2K
logJ(16) = -2K
