Use limit of a Riemann sum to evaluate 4xx2dx Solutionh ban
     Use limit of a Riemann sum to evaluate:  (4x-x2)dx,  ![Use limit of a Riemann sum to evaluate: (4x-x2)dx, Solutionh =(b-a)/n = 3/n sum = limn-> 3/n [f(2) + f(2+3/n) + f(2+6/n) + f(2+9/n)........] sum = limn->  Use limit of a Riemann sum to evaluate: (4x-x2)dx, Solutionh =(b-a)/n = 3/n sum = limn-> 3/n [f(2) + f(2+3/n) + f(2+6/n) + f(2+9/n)........] sum = limn->](/WebImages/7/use-limit-of-a-riemann-sum-to-evaluate-4xx2dx-solutionh-ban-991936-1761510159-0.webp) 
  
  Solution
h =(b-a)/n = 3/n
 sum = limn-> 3/n [f(2) + f(2+3/n) + f(2+6/n) + f(2+9/n)........]
 sum = limn-> 3/n [8 - 4 + 4(2+3/n) - (2+3/n)^2 + 4(2+6/n) - (2+6/n)^2 + 4(2+9/n) - (2+9/n)^2 + ......]
 sum = limn-> 3/n [4 + 8 + 12/n - 4 - 12/n - 9/n^2 + 8 + 24/n - 4 - 24/n - 36/n^2 + 8 + 36/n - 4 - 36/n - 81/n^2 + ...........]
 sum = limn-> 3/n [4 + 4 + 4 +...(n-1)terms -9/n^2[1+4+9+...(n-1)terms]
 sum = limn-> 3/n [4(n-1) - 9/n^2{n(n-1)(2n-1)}/6 ]
 sum = limn-> [12(n-1)/n - 27/n^3{n^3(1-1/n)(2-1/n)/6]
 apply limits
 sum = [12 - 9]
 sum = 3
![Use limit of a Riemann sum to evaluate: (4x-x2)dx, Solutionh =(b-a)/n = 3/n sum = limn-> 3/n [f(2) + f(2+3/n) + f(2+6/n) + f(2+9/n)........] sum = limn->  Use limit of a Riemann sum to evaluate: (4x-x2)dx, Solutionh =(b-a)/n = 3/n sum = limn-> 3/n [f(2) + f(2+3/n) + f(2+6/n) + f(2+9/n)........] sum = limn->](/WebImages/7/use-limit-of-a-riemann-sum-to-evaluate-4xx2dx-solutionh-ban-991936-1761510159-0.webp)
