From a population of 820 student a sample of 100 had a mean
Solution
Here,
fpc = sqrt((N-n)/(N-1)) = sqrt((820-100)/(820-1)) = 0.937614462
 Thus, the effective standard deviation is
s = sigma*fpc = 120*0.937614462 = 112.5137354
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.015          
 X = sample mean =    550          
 z(alpha/2) = critical z for the confidence interval =    2.17          
 s = sample standard deviation =    112.5137354          
 n = sample size =    100          
               
 Thus,              
 Margin of Error E =    24.41548058          
 Lower bound =    525.5845194          
 Upper bound =    574.4154806          
               
 Thus, the confidence interval is              
               
 (   525.5845194   ,   574.4154806   ) [ANSWER]

