Using the table for finding the areas under normal curves fi
Using the table for finding the areas under normal curves, find the area under a noraml curve with a mean of 200 and a standard deviation of 10 between the values of:
a. 200 to 205
b. 195 to 205
c. 200 to 215
d. 195 to 215
e. 186.5 to 217
Solution
a)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    200      
 x2 = upper bound =    205      
 u = mean =    200      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0      
 z2 = upper z score = (x2 - u) / s =    0.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.5      
 P(z < z2) =    0.691462461      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.191462461 [answer]
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    195      
 x2 = upper bound =    205      
 u = mean =    200      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.5      
 z2 = upper z score = (x2 - u) / s =    0.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.308537539      
 P(z < z2) =    0.691462461      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.382924923   [answer]
c)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    200      
 x2 = upper bound =    215      
 u = mean =    200      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0      
 z2 = upper z score = (x2 - u) / s =    1.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.5      
 P(z < z2) =    0.933192799      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.433192799   [answer]
d)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    195      
 x2 = upper bound =    215      
 u = mean =    200      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.5      
 z2 = upper z score = (x2 - u) / s =    1.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.308537539      
 P(z < z2) =    0.933192799      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.62465526   [answer]
e)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    186.5      
 x2 = upper bound =    217      
 u = mean =    200      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.35      
 z2 = upper z score = (x2 - u) / s =    1.7      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.088507991      
 P(z < z2) =    0.955434537      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.866926546   [answer]  
   
   



