Numerical methods The value of n can be calculated with the
Numerical methods
The value of n can be calculated with the series: pi = 4 sigma_n = 1^infinity (-1)^n-1 1/2n-1 = 4 (1 -1/3 + 1/5 + 1/7 + 1/9 1/11 + ...) Write a MATLAB program in a script file that calculates the value of pi by using n terms of the series and calculates the corresponding true relative error. (For the true value of it, use the predefined MATLAB variable pi.) Use the program to calculate it and the true relative error for: n = 10. n = 20. n = 40.Solution
function result = piApprox(n)
    piVal = 0
     term = 0
     for i = 1 : n
         term = (power(-1, i-1) * (1/((2 * i) -1)))
         piVal = piVal + term
         %fprintf(\" i = %d, term = %f \ \",i, term);
     end
     result = 4 * piVal
 end
function result = relativeError(compValue, actualValue)
    diff = actualValue - compValue
    if(diff < 0)
       diff = diff * -1
    end
    result = (diff/actualValue) * 100
 end
n = 10
 val = piApprox(n)
fprintf(\" n = %d, pi = %f, relative error = %f percent\ \",n,val,relativeError(val, pi) )
n = 20
 val = piApprox(n)
fprintf(\" n = %d, pi = %f, relative error = %f percent\ \",n,val,relativeError(val, pi) )
n = 40
 val = piApprox(n)
fprintf(\" n = %d, pi = %f, relative error = %f percent\ \",n,val,relativeError(val, pi) )
 ---output----
Executing the program....
 $octave -qf --no-window-system main.m

