Let the probability of success on a Bernoulli trial be 028 I
Let the probability of success on a Bernoulli trial be 0.28.
In five Bernoulli trials, what is the probability that there will be 4 failures? (Round your intermediate calculations and final answers to 4 decimal places.)
In five Bernoulli trials, what is the probability that there will be more than the expected number of failures? (Round your intermediate calculations and final answers to 4 decimal places.)
Solution
A)
If there are 4 failures, then there is 1 success.
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success =    0.28      
 x = the number of successes =    1      
           
 Thus, the probability is          
           
 P (    1   ) =    0.376233984 [ANSWER]
**********************
b)
The expected number of failures is
n(1-p) = 5*(1-0.28) = 3.6.
Thus, there must be at least 4 failures, or, at most 1 success.
Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    5      
 p = the probability of a success =    0.28      
 x = the maximum number of successes =    1      
           
 Then the cumulative probability is          
           
 P(at most   1   ) =    0.569725747 [ANSWER]

