Let V be the set of all ordered pairs of real numbers and co
Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication op- erations on u = (u1, u2) and v = (v1, v2): u+v=(u1 +v1 +1,u2 +v2 +1), ku=(ku1,ku2)
(a) Compute u+v and ku for u=(0,4),v=(1,3), and k = 2.
(b) Show that (0, 0) = 0.
(c) Show that (1, 1) = 0.
(d) Show that Axiom 5 holds by producing an ordered pair u such that u + (u) = 0 for u = (u1 , u2 ).
(e) Find two vector space axioms that fail to hold.
Solution
a)Given u=(u1,u2)=(0,4)
v=(v1,v2)=(1,-3)
k=2
so u1=0,u2=4,v1=1,v2=-3
u+v=(u1+v1,u2+v2)=(0+1,4-3)=(1,1)
ku=(ku1,ku2)=(2*0.2*4)=(0,8)
