1 For a random variable that is normally distributed with 1
1. For a random variable that is normally distributed, with = 115.57 and = 24.9251, the probability that a simple random sample of 35 items will produce a mean that is less than 113 is equal to
2. For a random variable that is normally distributed, with = 116.15 and = 25.4617, the probability that a simple random sample of 38 items will produce a mean that is less than 119 is equal to
Solution
1.
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    113      
 u = mean =    115.57      
 n = sample size =    35      
 s = standard deviation =    24.9251      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    -0.610000563      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   -0.610000563   ) =    0.270930717 [answer]
****************
2.
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    119      
 u = mean =    116.15      
 n = sample size =    38      
 s = standard deviation =    25.4617      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    0.690000271      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z >   0.690000271   ) =    0.754902992 [ANSWER]

