solve the following linear programming problems using simple
solve the following linear programming problems using simplex method.
Maximize P=4x+5y+6z
subject to 2x+3y+z<=900
3x+y+z<=350
4x+2y+z<=400
x=>0 y=>0 z=>0
Solution
Tableau #1
 x y z s1 s2 s3 s4 s5 s6 p   
 2 3 1 1 0 0 0 0 0 0 900
 3 1 1 0 1 0 0 0 0 0 350
 4 2 1 0 0 1 0 0 0 0 400
 1 0 0 0 0 0 -1 0 0 0 0
 0 1 0 0 0 0 0 -1 0 0 0
 0 0 1 0 0 0 0 0 -1 0 0
 -4 -5 -6 0 0 0 0 0 0 1 0
Tableau #2
 x y z s1 s2 s3 s4 s5 s6 p   
 2 3 1 1 0 0 0 0 0 0 900
 3 1 1 0 1 0 0 0 0 0 350
 4 2 1 0 0 1 0 0 0 0 400
 -1 0 0 0 0 0 1 0 0 0 0
 0 1 0 0 0 0 0 -1 0 0 0
 0 0 1 0 0 0 0 0 -1 0 0
 -4 -5 -6 0 0 0 0 0 0 1 0
Tableau #3
 x y z s1 s2 s3 s4 s5 s6 p   
 2 3 1 1 0 0 0 0 0 0 900
 3 1 1 0 1 0 0 0 0 0 350
 4 2 1 0 0 1 0 0 0 0 400
 -1 0 0 0 0 0 1 0 0 0 0
 0 -1 0 0 0 0 0 1 0 0 0
 0 0 1 0 0 0 0 0 -1 0 0
 -4 -5 -6 0 0 0 0 0 0 1 0
Tableau #4
 x y z s1 s2 s3 s4 s5 s6 p   
 2 3 1 1 0 0 0 0 0 0 900
 3 1 1 0 1 0 0 0 0 0 350
 4 2 1 0 0 1 0 0 0 0 400
 -1 0 0 0 0 0 1 0 0 0 0
 0 -1 0 0 0 0 0 1 0 0 0
 0 0 -1 0 0 0 0 0 1 0 0
 -4 -5 -6 0 0 0 0 0 0 1 0
Tableau #5
 x y z s1 s2 s3 s4 s5 s6 p   
 -1 2 0 1 -1 0 0 0 0 0 550
 3 1 1 0 1 0 0 0 0 0 350
 1 1 0 0 -1 1 0 0 0 0 50   
 -1 0 0 0 0 0 1 0 0 0 0
 0 -1 0 0 0 0 0 1 0 0 0
 3 1 0 0 1 0 0 0 1 0 350
 14 1 0 0 6 0 0 0 0 1 2100   
Hence the maximum value for the constraint P is equal to 2100


