Assume that X is a binomial random variable with n 10 and p
Assume that X is a binomial random variable with n = 10 and p = 0.70. Calculate the following probabilities.(Round your intermediate and final answers to 4 decimal places.)
a)P(X = 9)
b. P(X = 8)
c. P(X 8)
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    10      
 p = the probability of a success =    0.7      
 x = the number of successes =    9      
           
 Thus, the probability is          
           
 P (    9   ) =    0.121060821 [ANSWER]
*******************
b)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    10      
 p = the probability of a success =    0.7      
 x = the number of successes =    8      
           
 Thus, the probability is          
           
 P (    8   ) =    0.233474441 [ANSWER]
***************************
c)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    10      
 p = the probability of a success =    0.7      
 x = our critical value of successes =    8      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   7   ) =    0.617217214
           
 Thus, the probability of at least   8   successes is  
           
 P(at least   8   ) =    0.382782786 [ANSWER]


