Integrate the following functions over the circle C0 3 a iz3
Integrate the following functions over the circle C[0, 3].
(a) i^(z-3)
(b) sinz / ((z^2+(1/2))^2)
Solution
Problem (a)
03i(z3) dz
i = imaginary
03(1)(z3)/2 dz
Substitute u= (z3)/2
du/dz = 1/2
= 2(1)u du
Now solving:
(1)u du
Apply exponential rule:
= (1)u/ln(1)
Plug in solved integrals:
2(1)udu
= 2(1)u/ln(1)
Undo substitution u = (z3)/2
=2(1)(z3)/2/ln(1) | [0,3]
= [2(1)(33)/2/ln(1) + 2(1)(03)/2/ln(1)]
Theoretically solution will be not possible since ln(-1) is an invalid argument.
--
![Integrate the following functions over the circle C[0, 3]. (a) i^(z-3) (b) sinz / ((z^2+(1/2))^2)SolutionProblem (a) 03i(z3) dz i = imaginary 03(1)(z3)/2 dz Sub Integrate the following functions over the circle C[0, 3]. (a) i^(z-3) (b) sinz / ((z^2+(1/2))^2)SolutionProblem (a) 03i(z3) dz i = imaginary 03(1)(z3)/2 dz Sub](/WebImages/7/integrate-the-following-functions-over-the-circle-c0-3-a-iz3-992826-1761510710-0.webp)