Show that area K of a triangle ABC is K a2 sin 2B b2 sin 2A

Show that area K, of a triangle ABC is K= a^2 sin 2B + b2 sin 2A/4 = b^2 sin 2C + c^2 sin 2B/4 = c^2 sin 2A + a^2 sin 2C/4

Solution

Consider the second equation (b2Sin2C + c2Sin2B) / 4

Substituting the value for Sin2C = 2 SinACosA, we get

(2b2SinC CosC + 2c2SinB CosB) /4----------------------------------------------------------(i)
Now from Cosine rule we have,
CosC = (a2 + b2 - c2) / 2ab and CosB = (a2 + c2 - b2) / 2ac

Substituting CosC and CosB in eq (i), we get
(b(a2 + b2 - c2)SinC + c( a2 + c2 -b2) SinB) / 4a

Also from Sine Rule, we have

SinC / c = Sin A / a ; So SinC = cSinA / a

Similarly SinB = bSinA / a

Substituting the same in above equation, we get

{ b (a2 + b2 - c2) (cSinA / a) + c(a2 + c2 - b2) (bSinA/a)} / 4a

Simplying we get,

( bcSinA (a2+ b2 -c2) + bcSinA (a2 +c2 -b2)) / 4a2

= 2a2bcSinA / 4a2
= bcSinA/2-------------- which is the formula for the area of the traingle.

Similarly the other two equations can also be proved by same method,

 Show that area K, of a triangle ABC is K= a^2 sin 2B + b2 sin 2A/4 = b^2 sin 2C + c^2 sin 2B/4 = c^2 sin 2A + a^2 sin 2C/4SolutionConsider the second equation

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site