a Evaluate the expression under the given conditions sin ta
(a) Evaluate the expression under the given conditions.
sin( ); tan = 4/3, theta in quadrant 3, sin =- square root 10/10, in Quadrant IV ,
(b)Use the formulas for lowering powers to rewrite the expression in terms of the first power of cosine.
cos^4x
Solution
sin ( theta - fi ) = sin theta cos fi - cos theta sin fi
tan theta = 4/3
sin theta = -4/5
cos theta = - 3/5
sin fi = - sqrt 10 / 10
cos fi = sqrt 90 / 10
plugging the values in the formula
sin ( theta - fi ) = sin theta cos fi - cos theta sin fi = (-4/5)(sqrt 90/10) - ( -3/5)(-sqrt 10/10)
= -4sqrt 90 / 50 - 3 sqrt 10 / 50
= -.9486
b) cos^4x can be written as
cos^2x * cos^2 x = (cos^2x)^2
cos^2x = ( 1+ cos 2x ) /2
(cos^2x)^2 = {( 1+ cos 2x ) /2 }^2 = 1/4 ( 1+ cos^2 2x + 2 cos 2x )
again plugging the value of cos^2 2x
1/4 ( 1+ (1+ cos 4x)/2 + 2 cos 2x )
cos ^4x = 1/8 ( 3 + cos 4x + 4 cos 2x )
